Preliminary VDL Mode 2 Bench and Flight Test Results

Trent A. Skidmore and Aaron A. Wilson Ohio University Avionics Engineering Center

Presentation Overview

- VDL Integrated Performance Evaluation Rack
 - VIPER Ground & Airborne Equipment Description
- Pre-flight Bench Testing
 - Spectral characteristics and Receiver (Rx) sensitivity
 - Block Diagram & Sample Test Message
- Flight Testing
 - Goals
 - King Air Antenna Performance
 - Flight Test Results

VIPER Equipment Description

- VDL Mode 2 (VDLM2) Equipment
 - Park Air Radio (PAR) 5525D8 Multimode Transceivers
 - Currently operate in transmit (Tx) or receive (Rx) mode only
 - Advanced Relay Corporation HDLC Cards
- Host Computers
 - CyberResearch MPC-6020 with 10.4" LCD Display
 - Software configures Tx or Rx option
 - Spectrum analyzer & Ohio U. program measures power
- GPS Receivers
 - Novatel 3151 (12 Channels)

VIPER Ground and Airborne Components

- Top
 - Novatel GPSReceiver
- Middle
 - Park AirVDL Mode 2Transceiver
- Bottom
 - CyberResearchComputer

VDL Mode 2 Bench Test Configuration

- Bench test simulates flight test environment
- VIPER Tx Computer Generates Test Messages
 - Simulated "weather-related" data (Actual weather info to be used later)
 - Message length and duty cycle limits require further investigation

Measured Spectral Characteristics

Tx Characteristics

- Tx computer generates test messages
 - 223 bytes in length
 - Message counter for determining message count
 - GPS location of Tx station
 - Random fill bits
 - 32-bit checksum
 - Weather-related messages will be used eventually
- Messages rate = approx. 3/2 seconds = 1.5 Hz
- Power measured with HP8591E Spec Analyzer
 - Resolution Bandwidth (RBW) = 1 kHz for trace
 - RBW = 30 kHz for sensitivity measurements

Rx Mode Characteristics

- PAR VDLM2 equipment does not output "bad" messages
 - Raw Bit Error Rate (BER) not readily available
 - Use Message Failure Rate (MFR)
 - Determine sensitivity by post-processing data
- Reported MFR based on 10,000 messages
 - Test time per data point was approximately 2 hours
- Screen displays GPS time, range, message count, and count difference

Measured Sensitivity (view 1)

Measured Sensitivity (view 2)

- Set MFR=1e-6 for plotting purposes
- Interpolated Sensitivity Points

Power	Approx
(dBm)	MFR
-101	1e-5
-102	5e-4
-103	1e-3
-104	1e-2

Flight Test Preparation

King Air C-90 (N200U) Aircraft

Vertically Polarized
 (VPOL) Rx antenna on
 top of aircraft fuselage

Flight Test Configuration

VDLM2 Ground Station

VDLM2 Airborne System

GPS and VHF Antennas on Hangar Roof

GPS and VHF Antennas on top of aircraft fuselage

Flight Test Profile

- Tested the 210° compass radial to the extent of coverage at two altitudes above ground level:
 - 2,000 ft. AGL (typical minimum vectoring altitude)
 - Timely weather should not be needed below this altitude
 - − 18,000 ft. AGL (bottom of current ARINC coverage)

Compass Radials

210° radial chosen from Ohio University Airport (UNI) to minimize traffic-based course deviations

Current Method for Measuring In-Flight Received Power

- Use HP8591E Spectrum Analyzer (SA)
 - Power Measurement Settings
 - Resolution Bandwidth = Video BW = 30 kHz
 - Center measurement on known Tx frequency
 - Max Hold for 3 seconds
 - Allows for non-synchronized operation (SA & VDLM2)
 - Peak Search and record value at center frequency
- Customized Ohio U. data logging software
 - Multitasks with VIPER software under Windows 2000
 - Time tags power measurement with GPS time for post processing

A Collection of Interesting Pictures

Data File 1 Shakedown Flight

Data File 1 Shakedown Flight (2)

Predicting Performance at 2,000 ft and 18,000 ft (AGL)

- Model written by Ohio University
- Models terrain as uniform spherical earth
- Can vary surface conditions
 - Salt water

- Swamp
- Fresh waterDesert
- Average earth (used in this analysis)
- Assume isotropic VPOL Tx antenna
- Coverage performance varies from free space due to multipath and path length difference

Predicting Performance (2)

- Rx at 2,000 ft
 - Signal expected to be lost at ~45 NM
- Rx at 18,000 ft
 - Signal expected to be lost at ~140 NM
- Signal increase beyond loss region is artificial (need model update)
- Radio horizon using
 4/3 earth radius
 propagation estimate9

Data File 2 Radial at 2000 ft AGL

Data File 2 Radial at 2000 ft AGL (2)

Data File 3 Radial at 18,000 ft AGL

Data File 3 Radial at 18,000 ft AGL (2)

Comparing Received Signal Strength to Predicted (2,000 ft)

Comparing Received Signal Strength to Predicted (18,000 ft)

Comments on Received Data versus Model Prediction

- Flight test data and model are not in very good agreement (yet) still under investigation
 - Flight data is biased from model (6 16 dB)
 - Model predicts location of fades at 18,000 ft AGL
- Potential sources of model mismatch
 - Rx and Tx antenna calibration error
 - Tx antenna on hangar edge
 - Non-uniformity of local terrain